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a b s t r a c t

A trajectory piecewise linearization (TPWL) procedure for the reduced-order modeling of
two-phase flow in subsurface formations is developed and applied. The method represents
new pressure and saturation states using linear expansions around states previously simu-
lated and saved during a series of preprocessing training runs. The linearized representation
is projected into a low-dimensional space, with the projection matrix constructed through
proper orthogonal decomposition of the states determined during the training runs. The
TPWL model is applied to two example problems, containing 24,000 and 79,200 grid blocks,
which are characterized by heterogeneous permeability descriptions. Extensive test simula-
tions are performed for both models. It is shown that the TPWL model provides accurate
results when the controls (bottom hole pressures of the production wells in this case)
applied in test simulations are within the general range of the controls applied in the training
runs, even though the well pressure schedules for the test runs can differ significantly from
those of the training runs. This indicates that the TPWL model displays a reasonable degree
of robustness. Runtime speedups using the procedure are very significant–a factor of 100–
2000 (depending on model size and whether or not mass balance error is computed at every
time step) for the cases considered. The preprocessing overhead required by the TPWL pro-
cedure is the equivalent of about four high-fidelity simulations. Finally, the TPWL procedure
is applied to a computationally demanding multiobjective optimization problem, for which
the Pareto front is determined. Limited high-fidelity simulations demonstrate the accuracy
and applicability of TPWL for this optimization. Future work should focus on error estima-
tion and on stabilizing the method for large models with significant density differences
between phases.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The development of reduced-order modeling procedures has received significant attention in recent years. Reduced-order
models (ROMs) are particularly well suited for use in minimization procedures, where the forward model must be run many
times (e.g., hundreds or thousands) for the determination of optimal design or operating parameters. Our particular interest
here is in subsurface flow problems, specifically oil reservoir simulation. Other closely related applications include aquifer
management and the geological storage of carbon dioxide.

A number of the previous ROM procedures developed for subsurface flow applications are based on the use of proper
orthogonal decomposition (POD). This entails performing one or more high-fidelity training simulations, saving snapshots
(state vectors) at a number of time steps from these simulations, and then constructing a set of basis functions from these snap-
shots. The basis functions are generated through a singular value decomposition of the snapshot matrix, which is analogous to
. All rights reserved.
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an eigen-decomposition of the covariance matrix formed from the snapshots. Efficiency is achieved because only relatively few
basis functions must be retained; i.e., flow solutions can be represented in terms of just the leading basis vectors.

POD procedures were first introduced by Lumley [1] to identify coherent structures in dynamical systems and have sub-
sequently been applied in a number of application areas (e.g., [2–7]). Vermeulen et al. [8] appear to be the first to have ap-
plied POD techniques within the context of subsurface flow problems. They achieved substantial speedups for groundwater
flow involving a single (water) component. In this case, however, the governing equation is linear (or nearly linear). Jansen
and coworkers [9,10] applied POD techniques to two-phase (oil–water) flow. Here, due to differing phase viscosities and
phase interference (relative permeability) effects, the problem is nonlinear and the reported speedups were much more
modest; e.g., a factor of 3 or less.

In recent work targeting oil–water reservoir simulation problems, we incorporated new procedures designed to enhance
the basic POD approach (Cardoso et al. [11]). These included a snapshot clustering procedure [12] and a missing point esti-
mation (MPE) technique [13]. MPE acts to eliminate rows from the basis matrix and thus accelerates the requisite matrix–
matrix multiplications. We incorporated the POD techniques into a general purpose research simulator and applied them to
geologically realistic models containing 60,000 grid blocks. Speedups of up to about a factor of 10 were achieved.

There are however several limitations that impact the degree of speedup attainable from standard POD procedures for
this nonlinear problem. Consider a system containing Nc grid blocks (which corresponds to 2Nc unknowns for the oil–water
problem) and suppose that this system can be represented using ‘ basis functions. For specificity, in an example in our earlier
study [11], Nc = 60,000 and ‘ = 40. The standard POD procedure works at the level of the linear solver, reducing the sparse
2Nc � 2Nc linear system to a full ‘ � ‘ system. Solver time is thus reduced substantially. Computational requirements for
other operations, by contrast, such as the construction of the Jacobian matrix (which must be performed at each iteration
of every time step) are not reduced at all through the use of the standard POD technique. The application of MPE procedures
does eliminate the need for some rows of the Jacobian matrix (and thus they need not be constructed), but the required num-
ber of rows in the Jacobian would still be expected to be a reasonable fraction of Nc. In addition, a full implementation of MPE
requires modifications throughout the simulator. This may be complicated if the MPE procedure is incorporated into a com-
prehensive general purpose simulator.

We also observed that standard POD procedures are less robust and/or require more basis functions as the problem be-
comes more nonlinear, as occurs with strong gravitational effects and with highly nonlinear relative permeability functions
[11]. In these cases, the speedups offered by standard POD techniques will be quite modest at best.

Recent linearization procedures, specifically the trajectory piecewise linearization (TPWL) introduced by Rewienski and
White [14,15], appear to offer a means for addressing some of the limitations in standard POD techniques highlighted above.
The TPWL approach combines reduced-order modeling with linearization of the governing equations. For the implementation
described in this paper, TPWL proceeds as follows. First, two training simulations are performed, from which the states and
converged Jacobian matrices are saved. A basis matrix is then constructed from the states using proper orthogonal decompo-
sition, and this basis is used to form reduced states and reduced Jacobian matrices. In subsequent simulations, new states are
represented in terms of linear expansions around previously simulated (and saved) states and Jacobians. Very high degrees of
computational efficiency are achieved because all of these computations are performed in reduced space. TPWL has been suc-
cessfully applied in a number of application areas, including computational fluid dynamics [16], heat-transfer modeling [17],
biomedical micro-electromechanical systems (BioMEMS) [18], electronic circuits [19,20], and moving electromagnetic de-
vices [21]. Stabilized TPWL methods have also been recently presented by, e.g., [22,23]. TPWL procedures do not, however,
appear to have been considered for oil reservoir simulation or for any closely related subsurface flow applications.

Our goal in this paper is to develop and apply TPWL procedures for subsurface flow problems. Toward this end we for-
mulate a TPWL representation for oil–water flow and present extensive results for challenging subsurface flow problems.
Our examples involve highly heterogeneous geological models and include different phase densities (in one case) and non-
linear relative permeabilities. Numerical results demonstrate that, for test simulations that are within the general range of
the training runs, the TPWL procedure can provide predictions in close agreement with high-fidelity simulations with run-
time speedups of a factor of 100–2000. The computational overhead required to construct the TPWL model is the equivalent
of about four high-fidelity simulations.

This paper proceeds as follows. We first present the governing equations for oil–water flow and develop the linearized rep-
resentation. POD procedures and their use in conjunction with the linearized oil–water model are then described. Next, some
implementation issues are discussed and the overall TPWL algorithms are provided. We then present simulation results for
two cases, containing 24,000 and 79,200 grid blocks. Accurate results for oil and water production and water injection rates
are achieved for both cases for a wide variety of well control schedules. We additionally apply the TPWL representation for a
multiobjective optimization problem and demonstrate close correspondence with selected high-fidelity computations. Final-
ly, additional issues and outstanding challenges are discussed and concluding remarks are presented.

2. Trajectory piecewise linearization (TPWL) for subsurface flow

In this section we present the equations for two-phase subsurface flow and briefly describe the basic finite volume dis-
cretization. The TPWL procedure is then developed in detail. This includes a short description of the construction of the POD
basis matrix, which is required for the TPWL representation. We note that there are several heuristic components in our
TPWL formulation, which are discussed in the development that follows.
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2.1. Oil–water flow equations and discretization

Subsurface flow models are derived by combining mass conservation equations with the multiphase version of Darcy’s
law. For the oil–water case considered here, there is no mass transfer between phases; i.e., the oil component resides only
in the oil phase and the water component only in the water phase. Then, for each component/phase j (with j = o denoting oil
and j = w water), we have:
r � kjk rpj � qjgrD
� �h i

¼ @

@t
/

Sj

Bj

� �
þ qw

j ; ð1Þ
where k is the absolute permeability (assumed to be a diagonal tensor), kj = krj/(ljBj) is the phase mobility, krj is the relative
permeability to phase j, lj is the phase viscosity, Bj is the formation volume factor for phase j (defined below), pj is phase
pressure, qj is the phase density, g is gravitational acceleration, D is depth, t is time, / is porosity (void fraction of the rock),
Sj is saturation and qw

j is the source/sink term. The formation volume factor is defined as the ratio of the volume of phase j at
reservoir conditions to the phase volume at reference (stock tank) conditions. Designating the reference density of phase j as
q0

j , it follows that Bj ¼ q0
j =qðpÞ. In the case of incompressible flow, density does not vary with pressure and Bj = 1. The general

two-phase flow description is completed through the saturation constraint (So + Sw = 1) and by specifying a capillary pressure
relationship; i.e., pc(Sw) = po � pw, which relates the phase pressures.

The two-phase flow description entails four equations and four unknowns (po, pw, So, Sw). We select po and Sw as primary
unknowns (which we generally refer to simply as p and S). Once these are computed, pw and So can be readily determined
from the capillary pressure relationship and saturation constraint.

We now briefly discuss the standard finite volume representation for Eq. (1) (see [24,25] for more details). More special-
ized procedures; e.g., mixed finite element-finite volume [26] or multiscale techniques [27], could also be applied. We des-
ignate the spatial directions as (n, g, f) rather than the usual (x, y, z) since we will use x later to designate the states
(pressure and saturation). Fig. 1 shows a portion of a one-dimensional grid. For simplicity, here we neglect capillary pressure
(so po = pw = p), treat horizontal flow in the n-direction (for whichrD = 0), and assume the grid block dimensions (Dn, Dg, Df)
are constant. We consider fully implicit discretizations. For this case the discretized form for the flow terms (left hand side of
Eq. (1)) is
@
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where subscript j indicates phase and i designates grid block, superscript n + 1 specifies the next time step, and V = DnDgDf
is the volume of grid block i. The transmissibility ðTjÞnþ1

i�1=2 relates flow in phase j to the difference in pressure between grid
blocks i � 1 and i and is given by:
ðTjÞnþ1
i�1=2 ¼
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where A = DgDf is the area of the common face between blocks i � 1 and i. The interface permeability ki�1/2 is computed as
the harmonic average of ki and ki�1 and the krj/(Bjlj) term is upstream weighted. The transmissibility ðTjÞnþ1

iþ1=2 is defined

analogously. The flow terms can be seen to introduce nonlinearity into the system as ðTjÞnþ1
i�1=2 are functions of pressure

and saturation and multiply terms involving pressure.
The first term on the right hand side of Eq. (1) represents mass accumulation and is represented discretely for block i as:
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Fig. 1. Portion of a one-dimensional grid.
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where Dt is the time interval. For incompressible systems / is constant and Bj = 1, in which case Eq. (4) is given by:
@
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: ð5Þ
The second term on the right hand side of Eq. (1) represents the source/sink term. In reservoir simulation, the sources and
sinks correspond to wells which are modeled using a well equation:
qw
j

� �nþ1

i
¼Wi kj


 �nþ1
i ðpnþ1

i � pw
i Þ; ð6Þ
where ðqw
j Þ

nþ1
i is the flow rate of phase j from block i into the well (or vice versa) at time nþ 1; pnþ1

i is grid block pressure at
time nþ 1; pw

i is the wellbore pressure for well w in grid block i, and Wi is the well index. For a vertical well that fully pen-
etrates block i, Wi is given by [28]:
Wi ¼
2pkDf

ln r0=rwð Þ

� �
i

; ð7Þ
where rw is the wellbore radius and r0 � 0.2Dn. See [28] for expressions for Wi for more general cases. Note that, if a well is
operating under bottom hole pressure (BHP) control (i.e., well pressure rather than flow rate is prescribed), this is repre-
sented in the simulation model by specifying pw

i in Eq. (6). In three-dimensional models, BHP for a particular well is specified
at the uppermost well block and pw

i for lower blocks is computed using a qgDD correction. More general well models also
exist; see [29] for discussion.

The discrete representation of the three-dimensional case is a straightforward generalization of the one-dimensional dis-
cretization presented above. The resulting nonlinear system can be expressed as follows:
gðxnþ1;unþ1Þ ¼ Fðxnþ1Þ þ Aðxnþ1;xnÞ þ Q ðxnþ1;unþ1Þ ¼ 0; ð8Þ
where g represents the residual vector, which we seek to drive to zero, x designates the system states (pressure and satu-
ration), u indicates the system controls (well BHPs), and F, A and Q represent the convective, accumulation and source/sink
terms, respectively. See [24] for detailed expressions (though note that the signs of some terms in Eq. (8) differ from those in
[24]). This fully implicit system is nonlinear and is solved through application of Newton’s method, with the Jacobian matrix
given by @g/@x.

2.2. Linearization of governing equations

The linearized model can be developed by expanding the governing equations around a particular state x0 which corre-
sponds to a set of controls u0. In order to express the linearized model at the level of the governing partial differential equa-
tions, it is useful to rewrite Eq. (1) as
@aðxÞ
@t
þ fðxÞ þ qðx;uÞ ¼ 0; ð9Þ
where x ¼ ½p; S�T ; a ¼ ½/So=Bo;/Sw=Bw�T ;q ¼ ½qw
o ; q

w
w�

T and
f ¼ �
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r � kwkðrp� qwgrDÞ½ �

� �
; ð10Þ
where we take po = pw (i.e., pc = 0). Now, expanding around (x0, u0)
@

@t
a0 þ axð Þ0ðx� x0Þ
� 	

þ f0 þ fxð Þ0ðx� x0Þ þ q0 þ qxð Þ0ðx� x0Þ þ quð Þ0ðu� u0Þ ¼ 0: ð11Þ
Here, the subscript 0 means evaluated at x0 (or (x0,u0), as appropriate), ax = @a/@x (and similarly for fx and qx) and
qu = @q/@u. Noting that (x0, u0) satisfies Eq. (9), we can simplify Eq. (11) to
@

@t
axð Þ0ðx� x0Þ

� 	
þ fxð Þ0ðx� x0Þ þ qxð Þ0ðx� x0Þ þ quð Þ0ðu� u0Þ ¼ 0: ð12Þ
This equation is now linear in (x � x0). Given x0 and u0, it can be used to compute x(t). Deviations from the initial trajectory
(x0) are driven by the (qu)0(u � u0) term.

The numerical implementation of Eq. (12) can be developed by starting with the discrete representation, Eq. (8). We ex-
pand around previously simulated (saved) states and corresponding controls, designated as (xsv, usv). These states are saved
from a small number (two in the examples here) of preprocessing ‘training’ simulations [14]. Expanding Eq. (8) gives:
gðxnþ1;unþ1Þ ¼ gðxsv ;usvÞ þ @g
@x

� �
sv
ðxnþ1 � xsvÞ þ @g

@u

� �
sv
ðunþ1 � usvÞ þ � � � ; ð13Þ
where un+1 is the new set of controls (which are specified), xn+1 is the new state we wish to determine, and both (@g/@x)sv and
(@g/@u)sv are matrices evaluated at (xsv, usv). The detailed information associated with (@g/@x)sv is saved along with the states
during the training runs, though in a reduced form as described below.
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Given the solution at time step n (xn), our goal is to represent xn+1 in the form of Eq. (13), with higher-order terms ne-
glected. In the absence of information about the higher-order derivatives, error will be minimized by expanding around
the saved state that is the ‘closest’ to xn+1. We designate the state that is closest to xn as xi. It is then reasonable to assume
that the closest saved state to xn+1 (the state we seek to determine) is xi+1, which is the saved state that follows xi.

There are various criteria for determining the closest saved state, and we will specify our particular approach below. Note
that the ‘distance’ between the new and saved controls need not be considered in this determination as g is linear in u for the
well model used here (Eq. (6)). Thus, the linearized treatment with respect to u in Eq. (13) is exact regardless of the distance
between un+1 and ui+1.

We can now proceed with expansions of the form of Eq. (13) for each of the terms in Eq. (8). Expanding around xi+1, we
have, for the convective effects
Fnþ1 � Fiþ1 þ @Fiþ1

@xiþ1 ðx
nþ1 � xiþ1Þ; ð14Þ
where Fn+1 = F(xn+1) (and similarly for Fi+1) and @Fi+1/@xi+1 designates the flow term portion of the Jacobian matrix for the
state xi+1. Note that the controls do not appear in the flow terms.

The accumulation term depends on the states at time levels n and n + 1. We thus expand around both xi+1 and xi, which gives:
Aðxnþ1; xnÞ � Aiþ1ðxiþ1;xiÞ þ @Aiþ1

@xiþ1 ðx
nþ1 � xiþ1Þ þ @Aiþ1

@xi
ðxn � xiÞ: ð15Þ
From here on Ai+1(xi+1,xi) will be designated simply as Ai+1.
The source/sink term Q depends on both xn+1 and the new controls un+1. The source/sink term can thus be represented as
Q ðxnþ1;unþ1Þ � Q iþ1ðxiþ1;uiþ1Þ þ @Q iþ1

@xiþ1 ðx
nþ1 � xiþ1Þ þ @Q iþ1

@uiþ1 ðu
nþ1 � uiþ1Þ: ð16Þ
Recall that the controls in our case are the well bottom hole pressures, pw
i . Because of the way in which the controls appear in

the source term (Eq. (6)), we can compute Q(xi+1, un+1) directly. In other words, this term can be evaluated using the new
controls un+1 and not the controls ui+1 (which are the controls associated with the saved state xi+1). Thus we can write
Q ðxnþ1;unþ1Þ � Q ðxiþ1;unþ1Þ þ @Q iþ1

@xiþ1 ðx
nþ1 � xiþ1Þ: ð17Þ
This representation eliminates the need to construct @Qi+1/@ui+1 or to save it from the training simulations. An alternate rep-
resentation that does incorporate the @Qi+1/@ui+1 term is presented below.

Applying Eqs. (14), (15) and (17) into Eq. (8) we have:
gðxnþ1;unþ1Þ � Fiþ1 þ @Fiþ1

@xiþ1 ðx
nþ1 � xiþ1Þ þ Aiþ1 þ @Aiþ1

@xiþ1 ðx
nþ1 � xiþ1Þ þ @Aiþ1

@xi
ðxn � xiÞ þ Q ðxiþ1;unþ1Þ

þ @Q iþ1

@xiþ1 ðx
nþ1 � xiþ1Þ: ð18Þ
Defining the Jacobian matrix as:
Jiþ1 ¼ @Fiþ1

@xiþ1 þ
@Aiþ1

@xiþ1 þ
@Q iþ1

@xiþ1 ; ð19Þ
enables us to express Eq. (18) more concisely
gðxnþ1;unþ1Þ � Fiþ1 þ Aiþ1 þ @Aiþ1

@xi
ðxn � xiÞ þ Q ðxiþ1;unþ1Þ þ Jiþ1ðxnþ1 � xiþ1Þ ¼ 0: ð20Þ
Now, setting the residual using the new controls at the new state to zero (g(xn+1, un+1) = 0), we arrive at an equation that can
be solved to determine xn+1:
Jiþ1ðxnþ1 � xiþ1Þ ¼ � Fiþ1 þ Aiþ1 þ @Aiþ1

@xi
ðxn � xiÞ þ Q ðxiþ1;unþ1Þ

" #
: ð21Þ
An alternate representation for Eq. (21) can also be constructed. This representation has the advantage of not requiring the
Fi+1, Ai+1 and Q(xi+1, un+1) terms but it does require the @Qi+1/@ui+1 term. The relative advantages of this alternate representation
compared to Eq. (21) depend on which terms are most readily available, or easiest to compute, in the simulator used to generate
the TPWL model, and on the well model that is applied. To generate the alternate representation, we express Q(xi+1, un+1) as
Q ðxiþ1;unþ1Þ � Q ðxiþ1;uiþ1Þ þ @Q iþ1

@uiþ1 ðu
nþ1 � uiþ1Þ: ð22Þ
Inserting this representation into Eq. (21), and noting that gi+1 = Fi+1 + Ai+1 + Qi+1 = 0, we have
Jiþ1ðxnþ1 � xiþ1Þ ¼ � @Aiþ1

@xi
ðxn � xiÞ þ @Q iþ1

@uiþ1 ðu
nþ1 � uiþ1Þ

" #
: ð23Þ
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Because the source terms in our problem are linear in the controls (Eq. (6)), TPWL models based on the above linearizations
(Eqs. (21) and (23)) give identical results. More general well models, which represent wellbore flow effects, can also be ap-
plied (see, e.g., [29]). These models are nonlinear, so in this case we would expect to see some differences between results
using Eqs. (21) and (23).

2.3. Construction of the POD basis matrix

Eqs. (21) and (23) provide a representation for new states in terms of saved information, but they are of only limited use
in their current forms. This is because Ji+1 and @Ai+1/@xi are, although sparse, of dimensions 2Nc � 2Nc, and the other terms in
Eq. (21) are vectors of dimension 2Nc (recall that Nc is the number of grid blocks in the high-fidelity model). We therefore
proceed by applying proper orthogonal decomposition (POD) to construct an orthonormal basis that can be used to project
the high-fidelity linearized models to a lower-dimensional representation. As discussed in the Introduction, POD can be ap-
plied directly to the general simulation equations to provide a POD-based reduced-order model (as in [9,11]). Here, by con-
trast, we apply POD in conjunction with the linearized representation. We note that many previous TPWL implementations
[14,17–20] used Krylov techniques to construct the reduced-order basis, though POD was used by [16,21].

The basic POD procedure is presented in detail in [9,11] so our description here will be brief. The first step in POD is to
simulate the high-fidelity system one or more times with prescribed sequences for the controls u. These runs are known as
training simulations. The pressure and saturation states at each time step are saved as solution ‘snapshots,’ designated xp and
xs respectively (note that in our actual implementation we construct the POD basis using oil potential rather than pressure –
see Section 2.5 for further discussion of this issue). These snapshots also represent the saved states used in the TPWL pro-
cedure. The snapshots from all training simulations are assembled in the data matrices Xp and Xs, where each column cor-
responds to a single pressure (or oil potential) or saturation snapshot. The POD procedure is applied separately to Xp and Xs.
In the description below, we drop the p and s subscripts for conciseness.

Assume we have a total of k pressure snapshots and k saturation snapshots, meaning that the data matrix X is of dimen-
sions Nc � k (typically k� Nc). The POD basis matrix is given by the eigenfunctions of the matrix XXT. This matrix is of
dimensions Nc � Nc, so eigen-decomposition will be very expensive for large Nc. The eigenvectors of XXT, however, are iden-
tical to the left singular vectors of X, so we instead perform a singular value decomposition (SVD) of X. The singular values
(ri) of X are related to eigenvalues (ki) of XXT via ri ¼ k1=2

i .
If the basis matrix U contains as its columns all of the eigenvectors of XXT (left singular vectors of X) that correspond to non-

zero eigenvalues, it will be of dimensions Nc � k. However, there is very little ‘energy’ associated with many of the eigenvectors
(columns ofU) and these can be eliminated with little effect. The energy E‘ associated with the ‘most significant eigenvectors is
quantified as E‘ ¼

P‘
i¼1ki, where the eigenvalues are ordered in decreasing ki. The total energy of the system (Et) is computed by

setting ‘ = k in this computation. By specifying the fraction of the total energy that we wish to capture in U, a reasonable value
for ‘ 6 k can be determined. Other criteria, involving the rate of decay of ki with increasing i, can also be used to select ‘. In actual
applications, some amount of iteration may be required to determine appropriate values of ‘p and ‘s.

After applying the above procedure to both Xp and Xs, the basis matrices Up (of dimensions Nc � ‘p) and Us (Nc � ‘s) are
combined to produce one basis matrix U of dimensions 2Nc � ‘, where ‘ = ‘p + ‘s. The exact way in which these matrices are
combined depends on the ordering of the unknowns – see Eq. (13) in [11] for the detailed form. The U matrix can now be
used to relate a high-dimensional state x to a reduced state z; i.e.,
x � Uz; ð24Þ

where z is of dimension ‘. Because U is orthonormal, we also have z = UTx.

In the POD-based ROMs for subsurface flow presented in [9,11], at each iteration of each time step the full Jacobian matrix
J is constructed and subsequently projected into reduced space to provide the reduced Jacobian Jr, where Jr = UTJU. A linear
system of dimension ‘ is then solved to compute the solution update in reduced space. As indicated in the Introduction, this
procedure can provide a degree of speedup (at most about a factor of 10) relative to high-fidelity computations but it is lim-
ited due to the need for these costly computations at each iteration. As we will see below, the inline portion of the TPWL
procedure does not require these calculations, so much greater runtime speedups can be achieved.

2.4. TPWL representation with POD basis matrix

We now use U to project Eqs. (21) and (23) into reduced space. We first consider Eq. (21). Premultiplying both sides of Eq.
(21) by UT and approximating x as Uz gives:
UT Jiþ1Uðznþ1 � ziþ1Þ ¼ �UT Fiþ1 þ Aiþ1 þ @Aiþ1

@xi
Uðzn � ziÞ þ Q ðxiþ1;unþ1Þ

" #
: ð25Þ
This equation can be rewritten more concisely by defining Jiþ1
r ¼ UT Jiþ1U; ð@Aiþ1=@xiÞr ¼ UTð@Aiþ1=@xiÞU; Fiþ1

r ¼ UT Fiþ1;

Aiþ1
r ¼ UT Aiþ1, and Q r ¼ UT

wQ. The resulting equation can be solved directly for zn+1
znþ1 ¼ ziþ1 � Jiþ1
r

� ��1
Fiþ1

r þ Aiþ1
r þ @Aiþ1

@xi

 !
r

ðzn � ziÞ þ Q rðxiþ1;unþ1Þ
" #

: ð26Þ
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In Eq. (26), Jiþ1
r and (@Ai+1/@xi)r are full matrices of dimension ‘ � ‘ and the other terms are vectors of dimension ‘. The

matrices ðJiþ1
r Þ

�1 and (@Ai+1/@xi)r and the vectors zi+1, Fiþ1
r and Aiþ1

r can be precomputed because they are constructed from
the reduced basis U and information saved during the training runs. The vector Qr(xi+1,un+1), by contrast, cannot be precom-
puted because it depends on the controls un+1, which are not known when the training simulations are performed. This term
can be efficiently constructed, however, because high-fidelity information is required only for the small fraction of grid
blocks that contain wells. After the well block entries to Q(xi+1, un+1) are computed, this vector can be projected into the
reduced space using Q rðxiþ1;unþ1Þ ¼ UT

wQ ðxiþ1;unþ1Þ, where UT
w includes only those rows of the basis matrix that correspond

to grid blocks containing wells.
The reduced-order version of Eq. (23) can be constructed by proceeding in a similar manner. The result is
znþ1 ¼ ziþ1 � Jiþ1
r

� ��1 @Aiþ1

@xi

 !
r

ðzn � ziÞ þ @Q iþ1

@uiþ1

 !
r

ðunþ1 � uiþ1Þ
" #

; ð27Þ
where ð@Q iþ1=@uiþ1Þr ¼ UT
wð@Q iþ1=@uiþ1Þ.

The actual TPWL implementations accomplished in this work are for the case of incompressible fluid and rock. For such
systems, with reference to Eq. (5), the accumulation term becomes
Aðxnþ1; xnÞ ¼ Dðxnþ1 � xnÞ and Aðxiþ1;xiÞ ¼ Dðxiþ1 � xiÞ; ð28Þ
which gives @Ai+1/@xi+1 = � @Ai+1/@xi = D, where D is a constant matrix.
We note finally that another variant of TPWL, which represents Q(xn+1, un+1) in terms of an expansion around Q(xn, un+1),

is discussed in [30]. This representation performs well in many cases (including those presented in Section 3) but has been
found to be less accurate for problems involving strong density differences and variable injector pressures (this appears to be
due to the additional reconstruction error and instability associated with this TPWL variant). Thus TPWL models based on Eq.
(26) or (27) are evidently the most promising for general subsurface flow simulations. In all results presented here, the TPWL
model defined by Eq. (27) is applied.

2.5. Implementation issues

We now comment briefly on aspects of the numerical implementation and on some of the heuristic treatments employed.
The high-fidelity simulations are all performed using Stanford’s general purpose research simulator, GPRS [31,29]. The sim-
ulator was modified to output the Jacobian information from the training runs, as required by the TPWL procedure. The out-
put files occupy substantial disk space, as the matrices for the high-fidelity model can be quite large. Following the
simulation of the training runs, the reduced basis U is constructed, the reduced matrices are generated, and the reduced
Jacobian matrices are inverted. The computational requirements for constructing the basis and generating the required
matrices are comparable to the time required to perform the training simulations. These operations are however now per-
formed using Matlab [32], so it is likely that they can be accelerated.

If these output files are too large for the available disk space, then an alternate procedure can be applied in which the
training simulations are run twice. In the first set of training runs, only the states are saved. Using these states, the basis
matrix U is constructed. Then, in the second set of runs, the basis matrix is input to the simulator and the reduced matrices
(e.g., Jr) are generated and output. Using this approach we avoid outputting and storing any high-fidelity (2Nc � 2Nc) matri-
ces, though the number of training simulations doubles (this extra cost is somewhat mitigated by time savings associated
with reduced output to disk).

In forming the Up matrix (described in Section 2.3), we have investigated the use of snapshots of either pressure or oil
potential. Oil potential, designated uo, combines pressure and gravitational effects and is given by uo = p/qo � gD. In the
POD-based reduced-order modeling procedure developed in [11], for cases with significant difference in density between
phases, enhanced accuracy may be observed when the U matrix is computed using snapshots of uo rather than p. For the
TPWL results presented in Section 3, however, we achieved essentially identical results using either approach. The results
actually presented use snapshots of oil potential. For the determination of ‘p and ‘s, we first compute upper estimates for
these quantities by specifying E‘/Et for oil potential and saturation states as 0.999999 and 0.9999, respectively. A few tests
are then performed, using lower values of ‘p and ‘s, to find values that provide an appropriate degree of accuracy.

The TPWL solutions (Eq. (26) or (27)) are implemented as Matlab procedures. Our formulation generally avoids the need
to perform any computations using the high-fidelity model. However, in the following section we do report on the mass bal-
ance error observed using TPWL for some cases. For such calculations, the high-fidelity model must be reconstructed (using
x �Uz) and computations then performed using it. This will of course reduce the speedup achieved using TPWL.

The TPWL procedure represents new solutions, designated xn+1, in terms of expansions around saved solutions, designated
xi+1. As described above, this requires that we first determine the ‘closest’ saved state xi to the solution at the previous time
step, xn. It would be time consuming if this determination was performed using high-fidelity states. Therefore, we investi-
gated various approaches for finding the closest state using only reduced state information. The best accuracy was achieved
by determining the saved state that minimizes jzn

s � zi
sj, where zn

s ¼ UT
s xn

s and zi
s ¼ UT

s xi
s designate reduced saturation states
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(we only need to include the first five components of z in computing jzn
s � zi

sj as the component magnitudes decrease quickly).
Inclusion of the reduced pressure states in this determination did not provide additional accuracy. This is likely because the
problem is linear in pressure but nonlinear in saturation. Thus, the basic linearization (Eq. (13)) is less accurate for saturation
than pressure, which renders TPWL solutions more sensitive to distance from the saturation state than to distance from the
pressure state. We note that the distance between znþ1

s and ziþ1
s can be checked after the TPWL time step, and if there is a saved

state that is closer to znþ1
s , the time step can be repeated (this approach was not implemented here).

The basic TPWL algorithms are summarized below. Algorithm 1 presents the steps in the offline portion of the TPWL pro-
cedure. Steps 2–4 involve simulating and saving information from the training simulations. Steps 6–13 entail the construc-
tion of the U matrix, which is formed from Up and Us. Steps 15–17 generate reduced-space quantities that are needed for
either TPWL representation. Steps 19–21 are applied if the TPWL model is defined by Eq. (26), while step 24 is followed if the
TPWL model is defined by Eq. (27).

Algorithm 2 defines the inline part of the TPWL procedure. Step 1 prescribes the sequence of controls u, and the model is
run until the specified final time. Note that global reconstruction (step 6) need only be applied if material balance errors are
being computed. Otherwise, only the well states are required (step 8).

Algorithm 1. TPWL offline processing
1
 for each training simulation do

2
 Set controls u

3
 Run high-fidelity training simulation (GPRS)

4
 Save snapshots xp and xs and Jacobian matrices J

5
 end for

6
 Assemble data matrices Xp and Xs
7
 for Xp and Xs do

8
 Perform SVD(X)

9
 ki ¼ r2

i

10
 Determine ‘

11
 Construct U

12
 end for

13
 Combine Up and Us to form full U

14
 for each training simulation do

15
 z = UTx

16
 Jiþ1

r ¼ UT Jiþ1U

17
 (@Ai+1/@xi)r = UT(@Ai+1/@xi)U

18
 for Eq. (26) do

19
 Fiþ1

r ¼ UT Fiþ1
20
 Aiþ1
r ¼ UT Aiþ1
21
 Q r ¼ UT
wQ
22
 end for

23
 for Eq. (27) do

24
 ð@Q iþ1=@uiþ1Þr ¼ UT

wð@Q iþ1=@uiþ1Þ

25
 end for

26
 end for
Algorithm 2. TPWL inline processing
1
 Set new controls u

2
 while t < tfinal do

3
 Find zi

s closest to zn
s

4
 Solve linearized model (Eq. (26) or (27)) to compute new state zn+1
5
 if material balance error required then

6
 xn+1 �Uzn+1
7
 else

8
 xnþ1

w � Uwznþ1
9
 end if

10
 end while
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3. Simulation results

In this section we apply the TPWL procedure to two reservoir models –one containing 24,000 grid blocks and the other
containing 79,200 grid blocks. We consider the performance of the TPWL models for a variety of test runs and also apply
TPWL within the context of a multiobjective production optimization problem.

3.1. Reservoir model 1

3.1.1. Model description
This reservoir model, shown in Fig. 2, is a modified portion of a channelized reservoir model presented in [33] (the full

model is often referred to as SPE 10). The model is three-dimensional and contains 24,000 grid blocks, with nx = 60,
ny = 80 and nz = 5, where nx, ny and nz designate the number of grid blocks in each direction (we now refer to the spatial direc-
tions as (x, y, z)). There are four production wells (designated P1–P4) and two water injection wells (designated I1 and I2).

Permeability is taken to be a diagonal tensor, with kx = ky. The mean kx is 418 mD and the mean porosity is 0.203. The
vertical permeability (kz) is prescribed as kz = 0.3kx in the channels and kz = 10�3kx in the non-channel regions. The initial
oil and water saturations are 0.8 and 0.2, respectively and the residual oil (Sor) and water (Swr) saturations are 0.2. For oil
we set qo = 45 lb/ft3, lo = 3.0 cp; for water, qw = 60 lb/ft3, lw = 0.5 cp. The system is incompressible and capillary pressure
effects are neglected. The relative permeabilities for the oil and water phases are specified as:
Fig. 2.
kroðSwÞ ¼ k0
ro

1� Sw � Sor

1� Swr � Sor

� �a

; ð29Þ

krwðSwÞ ¼ k0
rw

Sw � Swr

1� Swr � Sor

� �b

; ð30Þ
where k0
ro and k0

rw are the endpoint relative permeabilities. Here we set k0
ro ¼ k0

rw ¼ 1 and a = b = 2.

3.1.2. Training runs
The first step in the TPWL procedure is to perform a small number of training runs using the high-fidelity model to gen-

erate the states and Jacobian matrices (GPRS is used for these simulations). For this reservoir model two training simulations
are performed. In all of these simulations the injection wells are prescribed to maintain constant bottom hole pressure (BHP)
of 10,000 psia. This condition will be maintained in subsequent test runs (our focus here is on varying the production well
BHPs). For the production wells, the BHPs are prescribed to follow schedules that are expected to represent approximately
the operating conditions that will be encountered in subsequent simulations. We have not yet established a fully systematic
approach for prescribing the training run BHPs, so we instead apply the following heuristic procedure (see [11] for further
discussion of this issue).

In the first training simulation, the BHPs of all four production wells are changed every 200 days, as indicated in Fig. 3(a),
such that the total flow rate (oil + water) of each production well is approximately the same and approximately constant in
time for each 1000 day interval. Specifically, over the first 1000 days, the total flow rate per well is 2000 stb/d (stock tank
barrels per day), from 1000 to 2000 days it is 2300 stb/d, from 2000 to 3000 days it is 2700 stb/d, from 3000 to 4000 days it is
3100 stb/d and from 4000 to 5000 days it is 3300 stb/d. In the second training schedule, the BHPs of the production wells are
varied every 200 days, randomly and independently, between 1000 and 4000 psia, as illustrated in Fig. 3(b) for P1 and P2
(wells P3 and P4 display similar BHP profiles). Thus with the training runs we attempt to capture constant flow rate behavior
(run 1) and more variable effects (run 2). Other training sequences could of course be devised, though as we will see below
this set of training runs generally results in accurate predictions in the subsequent test runs.
Synthetic reservoir model (24,000 grid blocks) with four production wells and two injection wells. Permeability in x-direction (in mD) is shown.



Fig. 3. Producer BHP schedules for (a) training run 1 and (b) training run 2.

Fig. 4. Producer BHP schedules for (a) P1 and P2 for test A and (b) P3 and P4 for test E.
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In the training runs, we simulate reservoir performance for a total of 5000 days with a maximum time step of 30 days.
From the two training runs 391 pressure and saturation snapshots and Jacobian matrices were recorded. The POD basis ma-
trix was constructed following the approach described in Section 2.3. The reduced basis U used for most of the runs in this
section contains a total of 400 columns, 250 of which correspond to pressure states and 150 to saturation states.

3.1.3. Test runs
We perform a total of eight test simulations using a variety of specifications for producer BHPs. Five tests (designated A–

E) are performed with random schedules. In test A the production well BHPs vary from 2000 to 3000 psia, for test B from
1500 to 3500 psia, for test C from 1000 to 4000 psia, for test D from 500 to 4500 psia, and for test E from 0 to 5000 psia.
Fig. 4(a) presents the BHPs for the production wells P1 and P2 for test A and Fig. 4(b) shows the BHPs for wells P3 and
P4 for test E. Note that the BHPs for tests A–C are within the range of the training runs, while those for tests D and E are
outside of this range.

Another set of three tests (F–H) is performed by modifying the producer BHPs used in training run 2 by varying amounts.
Fig. 5(a) shows that for tests F and G the BHPs of production well P1 are consistently below the BHPs used in training run 2.
On the other hand, for test H the BHPs are consistently above those used for training. The same is true for wells P2 and P3. For
production well P4, which is the well with the highest flow rate, in tests F–H we prescribe BHPs below that of training run 2,
as indicated in Fig. 5(b) (test H entails the largest deviation from the training run and is therefore the most challenging for
the TPWL model). Fig. 5(c) presents the BHPs for all of the production wells in test F and Fig. 5(d) depicts those for test H.

3.1.4. Error measures
The accuracy of the TPWL simulations can be assessed both visually and by computing the average error, relative to the

reference high-fidelity simulation, for the oil and water production rates and the water injection rate. We compute these
errors as in our previous paper [11]. Rates from the TPWL simulation are interpolated to correspond to the simulation times
in the high-fidelity simulation. We avoid interpolating across discontinuities in the well BHP. Our procedure for computing
error in oil production rate is as follows. For each production well m, at every simulated time step i, the oil production rates
in the high-fidelity simulation (Qm;i

o;hf ) and in the TPWL simulation (Q m;i
o;tpwl) are computed. The time-average error for each



Fig. 5. Producer BHP schedules for training run 2 and tests F–H: (a) P1, (b) P4, (c) test F – all wells and (d) test H – all wells.
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well, designated Em, is calculated as the average of the absolute differences, normalized by the time-average oil flow rate Q m
o;hf

for the well:
Em ¼ 1
ntQm

o;hf

Xnt

i¼1

jQ m;i
o;hf � Q m;i

o;tpwlj; ð31Þ
where nt is the total number of time steps. The overall average error, designated E, is computed by averaging Em over all wells:
E ¼ 1
nw

Xnw

m¼1

Em; ð32Þ
where nw is the number of production wells. The same procedure is applied to compute average errors in water production
and water injection rates (for water injection we average over the two injection wells).

The material balance errors for the oil and water components are also of interest. These are computed as follows for the
incompressible case considered here. For oil, at every time step i, the volume of oil in place (Vi

o) and the cumulative produc-
tion of oil (Q i

o) are computed (note that this requires that we reconstruct the high-fidelity solution). The oil material balance
error at time step i (MBEi

o) is given by:
MBEi
o ¼

V0
o � ðV

i
o þ Qi

oÞ
V0

o

; ð33Þ
where V0
o is the volume of oil in place at initial time. For the water component, the volume in place (Vi

w), the cumulative
production (Q i

w) and the cumulative injection (Ii
w) are similarly updated at each time step and the material balance error

is computed as:
MBEi
w ¼

V0
w � ðV

i
w þ Q i

w � Ii
wÞ

V0
w

; ð34Þ
where V0
w is the volume of water originally in place. The material balance errors reported below are the maximum MBEi

o and
MBEi

w computed during the course of the TPWL simulation.

3.1.5. Model 1 simulations
We now present results illustrating and quantifying the performance of TPWL for the test runs. Fig. 6 demonstrates the

accuracy of the TPWL model relative to the high-fidelity model for test C. The producer BHP schedules are shown in Fig. 6(a).



Fig. 6. Results for test C: (a) BHPs for each production well, (b) oil rate for production wells P1 and P2, (c) water rate for production wells P3 and P4 and (d)
injection rates for wells I1 and I2.

Fig. 7. Results for test E: (a) oil rate for production wells P1 and P2, (b) oil rate for production wells P3 and P4, (c) water rate for production wells P3 and P4
and (d) injection rates for wells I1 and I2.
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Table 1
Errors in TPWL solutions for tests A–E.

Test A Test B Test C Test D Test E

Oil prod. 0.0080 0.0126 0.0147 0.0187 0.0236
Water prod. 0.0176 0.0255 0.0247 0.0343 0.0819
Water inj. 0.0049 0.0057 0.0075 0.0098 0.0113
MBE oil 0.0005 0.0009 0.0009 0.0014 0.0030
MBE water 0.0015 0.0014 0.0051 0.0035 0.0140

Fig. 8. Results for test G: (a) BHPs for each production well, (b) oil rate for production wells P1 and P2, (c) water rate for production wells P3 and P4 and (d)
injection rates for wells I1 and I2.
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It is apparent that these well BHPs differ significantly from any of the training runs, though they are within the range of the
training BHPs. Fig. 6(b) presents the oil rates for wells P1 and P2, while Fig. 6(c) shows the water rates for wells P3 and P4.
Fig. 6(d) depicts the injection rates for wells I1 and I2. It is evident from these figures that the TPWL results, depicted by � ’s
and circles, are in very close agreement with the reference high-fidelity (GPRS) solutions, depicted by solid and dashed
curves. Though not shown, results of similar accuracy are achieved for the oil rates for wells P3 and P4 and the water rates
for wells P1 and P2. Thus these results demonstrate the viability of the TPWL method for modeling subsurface flow.

We next consider test E. The TPWL model for test E would not be expected to be as accurate as in the previous case be-
cause the well BHPs vary over a larger range. In addition, these well BHPs are outside of the range of the training runs. Thus
this is a challenging test case. Fig. 7(a) presents the oil rates for wells P1 and P2, while Fig. 7(b) shows the oil rates for wells
P3 and P4. Although acceptable accuracy is achieved over most of the simulation, well P3 displays error in oil rate between
1000 and 1500 days. Fig. 7(c) shows the water production rates for wells P3 and P4. Some error in the water rate for well P3
is evident. Results of similar accuracy are observed for wells P1 and P2. Fig. 7(d) presents the injection rates for wells I1 and
I2, which are seen to be quite accurate. This case illustrates that the TPWL model can lose some accuracy if the test runs
involve well settings (and thus states) that are outside the range of the training runs. However, the magnitude of the discrep-
ancy between the TPWL model and the high-fidelity simulation is not excessive, suggesting that the TPWL model is reason-
ably robust.

The average oil and water production rate errors, the average water injection rate error, and the maximum material bal-
ance errors for oil and water, for tests A–E, are presented in Table 1. From the results in this table, it is evident that the errors
in production and injection rates increase consistently as we proceed from test A to test E (thus test C represents in some
sense an ‘average’ result). For the mass balance errors, there is not a monotonic increase as we proceed from test A to test



Table 2
Errors in TPWL solutions for tests F–H.

Test F Test G Test H

Oil prod. 0.0066 0.0095 0.0136
Water prod. 0.0165 0.0244 0.0520
Water inj. 0.0033 0.0051 0.0068
MBE oil 0.0001 0.0004 0.0016
MBE water 0.0039 0.0061 0.0177

Fig. 9. Errors in the TPWL simulations for different numbers of basis functions.
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E, though test E does provide the largest errors. The general level of the production and injection rate errors is relatively
small, though we reiterate that they are average errors and significant instantaneous errors are observed in some cases.

We now consider the second set of test runs. Results for test G are shown in Fig. 8. Fig. 8(a) presents the BHP schedules
prescribed for each production well, Fig. 8(b) shows the oil rates for wells P1 and P2, Fig. 8(c) depicts the water rates for wells
P3 and P4, and Fig. 8(d) provides the injection rates for wells I1 and I2. Results for oil rates for P3 and P4 and water rates for
P1 and P2 are comparable. For all of these results, the agreement between the TPWL and the high-fidelity models is quite
close.

The average well rate errors and maximum material balance errors for tests F–H are presented in Table 2. It is evident that
these errors increase consistently from test F to test H. The errors are generally comparable in magnitude to those presented
in Table 1 for tests A–E, again indicating the overall level of accuracy and robustness of the TPWL model for this example.

The results above demonstrate that, for the cases considered, the TPWL model is able to provide simulation results in rea-
sonable agreement with high-fidelity simulations, particularly when the controls (producer BHPs in our case) are kept within
the range of the training simulations. The computational requirements for the high-fidelity (GPRS) and TPWL simulations
are, however, considerably different. The GPRS simulations require about 430 s of CPU time, while the TPWL runs consume
only about 0.85 s if we do not compute the material balance errors at every time step. This represents a runtime speedup of
about 500. If we compute the material balance errors at every time step, the TPWL computations require about 4 s, which
reduces the runtime speedup to about a factor of 100. It is not necessary to compute the material balance errors at every time
step, however, and if they are computed relatively infrequently (e.g., every 10–20 time steps), the additional computation
will not be excessive.

The speedups achieved by the TPWL model are significantly greater than those attained by previous POD-based reduced-
order modeling approaches for this problem. Specifically, as indicated in the Introduction, POD-based ROMs [9–11] achieved
at most about a factor of 10 speedup. The much larger speedups observed here are due to the fact that the TPWL model
avoids many of the computations required by the POD-based ROM procedures, as discussed in Section 2.3.

As the computational costs associated with the TPWL model (both the runtime and preprocessing calculations) increase
with increasing ‘ (number of columns in U), it is useful to assess the impact of ‘ on the accuracy and timing of the TPWL
model. To quantify these effects, we perform TPWL simulations for the two training runs and the eight test runs using dif-
ferent sized U matrices. Fig. 9 presents the average errors for oil and water production rates and water injection rates using
different numbers of basis functions. For these computations, we use prescribed percentages (from 20% to 100%) of the ‘p and
‘s used in the results presented above (recall that for those results ‘p = 250, ‘s = 150). From the figure, it is evident that TPWL
maintains reasonable accuracy in oil and water production and water injection rates, even with fairly small ‘p and ‘s. Run-
time speedups for these models are as follows (material balance error is not computed): for ‘ = 400, speedup is 500 (as indi-
cated above); for ‘ = 320, speedup is 642; for ‘ = 240, speedup is 777; for ‘ = 160, speedup is 873; and for ‘ = 80, speedup is
995.



Fig. 10. Synthetic reservoir model containing 79,200 grid blocks with four production wells and two injection wells. Permeability in x-direction (in mD) is
shown.
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3.2. Reservoir model 2

3.2.1. Model description
We now consider a larger model in order to demonstrate the applicability of the TPWL representation for models

approaching sizes encountered in practical reservoir simulation. Like the reservoir model used in the examples above, this
system is derived from [33]. The model, again containing four production wells and two water injection wells, is of dimen-
sions 60 � 220 � 6, for a total of 79,200 grid blocks (see Fig. 10). All fluid properties are the same as those used previously
except for the oil and water densities, which we prescribe as qo = qw= 55 lb/ft3.

For the case of fluid densities that differ significantly, the accuracy of the overall method can be more sensitive to the
number of basis functions (‘p and ‘s) used in the construction of Up and Us than in the case of qo = qw (J. He and J. Saetrom,
private communication). This sensitivity is related to potential instabilities in the TPWL model, and these instabilities appear
to increase with increasing model size. This general issue is discussed further in Section 4, where we present results for res-
ervoir model 2 with qo – qw. In future work we will investigate the use of stabilized TPWL procedures (e.g., [22,23]) for cases
with significant density differences.

3.2.2. Training and testing runs
For this reservoir model we perform two training runs, both with the injection wells prescribed to operate at a constant

bottom hole pressure of 8000 psia. For the first training run the BHPs of the four production wells are held constant at 1000
psia. In the second training run the BHPs are varied randomly and independently over a range of 1000–4000 psia. The train-
ing runs were simulated for 5000 days with a maximum time step of 30 days. A total of 415 pressure and saturation snap-
shots and Jacobian matrices were recorded. The POD basis contains a total of 400 columns, 150 of which correspond to
pressure and 250 to saturation.

We perform a total of five test simulations (designated I–M) using random producer well BHP schedules. In test I the pro-
duction well BHPs range from 2000 to 3000 psia, for test J from 1500 to 3500 psia, for test K from 1000 to 4000 psia, for test L
from 500 to 4500 psia, and for test M from 0 to 5000 psia.

3.2.3. Model 2 simulations
Fig. 11 demonstrates the ability of the TPWL representation to reproduce results for test K. Fig. 11(a) presents the BHP

schedule for each production well, Fig. 11(b) shows the oil rate for wells P3 and P4, Fig. 11(c) depicts the water rate for wells
P1 and P2 and Fig. 11(d) provides the injection rates for wells I1 and I2. TPWL results are generally quite accurate, though
error in water rate in well P2 is evident just after the breakthrough.

Errors in the TPWL solutions for tests I through M are presented in Table 3. Recall that producer BHPs for tests I–K are
within the range of the training runs, while those for tests L and M are outside of this range. The errors in Table 3 are overall
higher, but generally of comparable magnitude, relative to those presented in Table 1 for tests A–E. Errors clearly trend high-
er as we proceed from test I to test M, as expected, though the increase is not strictly monotonic. Water production errors are
fairly high for tests K–M. These results reiterate that the TPWL model provides accurate results within an appropriate range,
but that solution accuracy can degrade outside of the range of the training runs.

The runtime speedups offered by TPWL relative to the high-fidelity simulations are even larger in this case than in the
previous example. Specifically, the GPRS simulations for this model required about 30 min of CPU time, while each TPWL
run required only 0.9 s if material balance errors were not computed. These timings correspond to a runtime speedup factor
of about 2000. If material balance errors are computed at every time step, the TPWL runs require about an order of magni-
tude more computation, so the speedup relative to GPRS is reduced to about a factor of 200.



Table 3
Errors in TPWL solutions for tests I–M.

Test I Test J Test K Test L Test M

Oil prod. 0.0097 0.0139 0.0145 0.0221 0.0404
Water prod. 0.0236 0.0211 0.0639 0.0946 0.1852
Water inj. 0.0040 0.0078 0.0118 0.0141 0.0214
MBE oil 0.0014 0.0012 0.0020 0.0029 0.0040
MBE water 0.0041 0.0036 0.0096 0.0104 0.0217

Fig. 11. Results for test K: (a) BHPs for each production well, (b) oil rate for production wells P3 and P4, (c) water rate for wells P1 and P2 and (d) injection
rates for wells I1 and I2.
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3.3. Optimization using TPWL

A target application for this TPWL method is as a fast (approximate) function evaluator in optimization procedures. With-
in the context of oil reservoir management, one is often interested in maximizing oil production or the net present value of
the project. In another paper [34], we apply TPWL for single-objective optimization. In that case we are able to compare opti-
mization results using the high-fidelity model with those using TPWL, and close agreement in optimized net present value is
observed (even though the control sequences differ slightly between the two cases).

Here we address a more challenging multiobjective optimization in which we seek to maximize cumulative oil produc-
tion while minimizing cumulative water injection. Thus the goal of the optimization is to determine the Pareto front on a
plot of cumulative oil produced versus cumulative water injected. We address this problem by combining (using linear
weighting) the two objectives into a single objective function, which we then maximize. By varying the relative weighting
of the two terms, the convex portion of the Pareto front can be generated. Specifically, we maximize the net present value
(NPV) of the reservoir over a period of 3000 days. The discount rate is 10% and the cost of both the produced and injected
water is fixed at $10/stb. The oil price is varied from $10/stb to $150/stb in increments of $2/bbl, and the optimization is
performed for each oil price. By varying oil price we vary the weighting of the two terms. The solution of this optimization
problem is computationally demanding if the high-fidelity model is used because the optimization procedure must be run
for each different oil price.

For this optimization, we consider reservoir model 1 (containing 24,000 grid blocks) and optimize the BHPs of the four
producer wells. The minimum and maximum producer BHPs are prescribed as 1000 psia and 4000 psia respectively. These



Fig. 12. Optimized cumulative oil production versus cumulative water injected.

Table 4
Errors in TPWL solutions (no reduction) for tests I–M.

Test I Test J Test K Test L Test M

Oil prod. 0.0041 0.0033 0.0067 0.0153 0.0148
Water prod. 0.0203 0.0131 0.0337 0.0686 0.0755
Water inj. 0.0014 0.0012 0.0013 0.0056 0.0050
MBE oil 0.0007 0.0005 0.0009 0.0028 0.0024
MBE water 0.0018 0.0017 0.0031 0.0047 0.0178
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BHPs are updated every 250 days. As the simulation is run for 3000 days, there are a total of 48 control variables (12 for each
production well). We further specify that the maximum change in BHP from one control step to the next is 250 psia. For the
optimization, we use a gradient-based procedure (‘‘fmincon” in Matlab [32]), with the gradients computed using numerical
finite difference. A total of four iterations of the optimization are performed, meaning that each point on the curve requires
196 simulations (a few more simulations may be required in the line search).

The TPWL model is formed as follows. In the first training run, the BHPs of all production wells are kept constant at 1000
psia. For the second training run, we use the random case applied in Section 3.1.2 (depicted in Fig. 3(b)). A reduced basis U is
then constructed with ‘p = 250 and ‘s = 150.

The optimization results are presented in Fig. 12, where we plot cumulative oil produced versus cumulative water in-
jected. The �’s represent TPWL solutions (71 points were generated), while the solid circles represent high-fidelity (GPRS)
results computed using the optimal well settings as determined from the TPWL optimizations. For a few points (shown
as triangles) we perform the full optimization using the high-fidelity model. The general correspondence between these
three sets of points is quite close, indicating the applicability of the TPWL procedure for this application.

The speedup achieved by TPWL for this case is very significant. A total of about 13,916 simulations are required for this
optimization. The TPWL computations required 0.85 s per run, while the high-fidelity simulations consumed 430 s per run.
Thus the full optimization entailed 3.3 h using TPWL. The TPWL overhead, which is the equivalent of about four high-fidelity
simulations, required about 0.5 h (so total TPWL computation time was about 3.8 h). We did not perform the full optimiza-
tion using the high-fidelity model – had we done this, it would have required about 69.3 days.

4. Additional issues

The results presented in the previous section demonstrate the potential of the TPWL method for subsurface flow model-
ing. Reasonable accuracy was achieved for two realistic example cases for test simulations in which the production well con-
trols (BHPs) were quite different from those used in the training simulations. The method was also shown to be applicable
for use in production optimization problems. There remain, however, several issues that must be addressed before the TPWL
procedure can be used for a wide range of practical subsurface flow problems.

4.1. Linearization and projection errors

Because the method is based on linearization around previously simulated (saved) states, degradation in accuracy is to be
expected when higher-order terms in the expansion (Eq. (13)) become significant. Error also arises from the projection into
reduced space and the reconstruction in physical space. We can assess the relative contributions of these two errors by run-
ning the linearized model without applying any reduction, which corresponds to solving Eq. (21) or (23). Solution of these
equations is time consuming and thus not very useful for practical simulations, but it does elucidate the sources of TPWL
model error.



Fig. 13. Results for test K with density difference: (a) BHPs for each production well, (b) oil rate for production wells P3 and P4, (c) water rate for wells P1
and P2 and (d) injection rates for wells I1 and I2.
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We performed TPWL simulations with no reduction (by solving Eq. (23)) for all test runs for both reservoir models. Rep-
resentative results, for test runs I–M (reservoir model 2), are presented in Table 4. Comparison of the errors in Table 4 to the
errors shown earlier for the same test runs with reduction (Table 3) demonstrate that model accuracy is in all cases higher
when reduction is not applied, as would be expected. For some quantities the errors are significantly less for the non-reduced
model (e.g., water production rate error for test M, which decreases from 0.1852 to 0.0755), though in other cases the errors
are quite close. These results, in addition to those for test runs A–H, indicate that some of the error in the TPWL results
shown in Section 3 derives from the linearization but that a significant portion of the error arises from projection and recon-
struction. Thus improved TPWL procedures should target both of these sources of error.

In practical settings, it will be useful to develop efficient estimators for these errors as well as heuristics that indicate
when the TPWL solution is likely to degrade. Preliminary results suggest that empirical error estimates that relate error
in oil and water production rates and injection rate to mass balance error and some measure of the distance between the
saved state xi+1 and the computed state xn+1 (both of which can be readily computed) are of value in this regard, though fur-
ther quantification is necessary.

4.2. Stability issues for systems with density differences

As noted in Section 3.2.1, TPWL accuracy for reservoir model 2 (containing 79,200 cells) degrades when strong density
differences are included. We illustrate this effect by considering a case that is identical to reservoir model 2 except now
we specify qo=45 lb/ft3 and qw=60 lb/ft3 (in the earlier results we used qo = qw= 55 lb/ft3). The training runs are identical
to those used in the earlier results. TPWL results for this case for test run K are shown in Fig. 13. Errors are clearly larger
in this case than for the case of equal densities (Fig. 11). Larger errors can be observed in more extreme cases; e.g., for con-
trols that are outside the range of the training runs or for greater density differences. We also observe increased sensitivity of
TPWL model accuracy to the number of basis functions (‘p and ‘s) used in the construction of Up and Us for cases with sig-
nificant density differences.

The different behaviors observed for equal versus unequal densities appear to be related to the stability of the linearized
representation. A preliminary investigation (J. He and J. Saetrom, private communication) shows that large TPWL errors are
associated with local instabilities in the TPWL equation. Specifically, defining an appropriate amplification matrix based on
Eq. (27) (or Eq. (23) in the case of no model reduction), we observe that local ‘spikes’ in TPWL model error appear when the
spectral radius of the amplification matrix exceeds 1 (which corresponds to an unstable representation). Instability in
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reduced-order models has been noted and discussed by previous investigators (e.g., [35,22,23]) for problems in other appli-
cation areas.

The different characteristics of the TPWL models for the two problems likely arise from the more complex physics that
appear in cases with unequal densities. These cases display more localized (high-frequency) variability in the saturation
field, which occurs as a result of the local competition between convective and gravitational effects. The saturation fields
in this case may resemble discrete random fields, in contrast to the smoother fields observed for the equal density case.
In addition, for the equal density case oil and water always flow in the same direction, while for unequal densities coun-
ter-current flow can occur in the vertical direction. This modifies the structure of the Jacobian matrix (due to upstream
weighting). Thus there are key physical and numerical differences between the two cases, and in future work we will at-
tempt to relate the observed differences in stability to these effects.

Other researchers have addressed ROM and TPWL stability issues that arise in other application areas, and they have sug-
gested a number of remedies which we plan to investigate. These include the use of Fourier model reduction [35] and im-
proved TPWL weighting functions and projection schemes [22,23]. Along these lines, in preliminary tests we have observed
improved results using basis switching and the optimization of ‘p and ‘s. Our results also suggest that some amount of
retraining, to assure that the test simulations are sufficiently ‘close’ to training runs, will yield improved results. The
goal-oriented optimization procedure for constructing the basis matrix presented in [36] and the training scheme suggested
in [37] may be useful in this regard.
4.3. Optimization and additional applications

Within the context of optimization, error estimators could be used to determine when model retraining is required.
Retraining could then be accomplished by performing one or more new high-fidelity simulations using control schedules
consistent with those at the current stage of the optimization. This would provide additional saved states which should
be closer to those encountered during subsequent stages of the optimization. Overall speedups will not, however, be as sub-
stantial if retraining is performed. A related approach involving a two-stage optimization, in which variable injector pres-
sures were also considered, is presented in [34]. In that application, the TPWL model was trained using two (heuristic)
training simulations and the optimization was performed. The model was then retrained using the ‘optimal’ settings deter-
mined in this first stage and the optimization was repeated. This approach was shown to provide optimization results and
well settings in reasonably close overall agreement with those from the high-fidelity model.

Finally, it will be of interest to extend the TPWL technique to more complex subsurface flow problems. This could include
the modeling of thermal operations which, like compositional systems, are often very expensive to simulate. For such cases,
the development of reduced-order models that retain a reasonable level of accuracy could enable the application of compu-
tational production optimization for realistic problems.
5. Concluding remarks

In this paper we developed a trajectory piecewise linearization (TPWL) procedure for the modeling of two-phase flow in
subsurface formations. This reduced-order modeling technique entails representation of new states in terms of linear expan-
sions around states previously simulated and saved during a series of preprocessing training runs. The method is efficient
because all computations are performed in a low-dimensional space determined through proper orthogonal decomposition
of the pressure (or oil potential) and saturation states encountered during the training simulations.

We applied the method to two models, containing 24,000 and 79,200 grid blocks, derived from the SPE 10 reservoir
description. We observed reasonable levels of accuracy in TPWL computations for oil and water production rates and
water injection rates for test cases in which the production well bottom hole pressures were within the general range
of the training simulations. For such cases (tests A–C, I–K), average relative errors in oil and water production rates were
at most 0.0147 and 0.0639 respectively. The TPWL model is not mass conservative, though for tests A–C and I–K, maxi-
mum mass balance errors were 0.0020 or less for oil and 0.0096 or less for water. As expected, when the production well
BHP schedule in the test runs differed significantly from those of the training runs, the accuracy of the TPWL model
degraded. In many cases error was still acceptable, though large errors were observed for some quantities (e.g., water
production rate in test M).

The preprocessing overhead required for the construction of the TPWL model corresponds to about the time required to
simulate four high-fidelity models. The TPWL model provided runtime speedups of about 500-2000 for the cases considered
if mass balance error was not computed. Speedups will be less dramatic if mass balance error is assessed frequently (though
in practice this error need be computed only occasionally) or if retraining is performed.

We also applied the TPWL procedure to a multiobjective optimization in which the goal was to maximize cumulative oil
production while minimizing cumulative water injection. TPWL results for the Pareto front were in agreement with limited
high-fidelity computations, demonstrating the potential applicability of the TPWL procedure for computationally demanding
optimization problems. Future work should address issues relating to the efficient estimation of TPWL model error, the
development of a stabilized TPWL model for cases with different phase densities, and retraining of the TPWL model during
the course of the optimization.



700 M.A. Cardoso, L.J. Durlofsky / Journal of Computational Physics 229 (2010) 681–700
Acknowledgments

We are grateful to Huanquan Pan for modifying Stanford’s general purpose research simulator (GPRS) to output informa-
tion required by the TPWL representations and to David Echeverria Ciaurri for useful discussions and suggestions regarding
Matlab optimization routines. We also thank Jincong He and Jon Saetrom for insightful comments and for providing us with
preliminary results from their investigation of the performance of TPWL for problems with strong density differences. Final-
ly, we thank two anonymous reviewers for their constructive suggestions on the initial version of this paper.

References

[1] J.L. Lumley, Atmospheric turbulence and radio wave propagation, Journal of Computational Chemistry 23 (13) (1967) 1236–1243.
[2] P. Astrid, A. Verhoeven, Application of least squares MPE technique in the reduced order modeling of electrical circuits, in: 17th International

Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, 2006.
[3] D. Zheng, K.A. Hoo, M.J. Piovoso, Low-order model identification of distributed parameter systems by a combination of singular value decomposition

and the Karhunen-Loève expansion, Industrial & Engineering Chemistry Research 41 (6) (2002) 1545–1556.
[4] Y. Cao, J. Zhu, Z. Luo, I.M. Navon, Reduced order modeling of the upper tropical Pacific ocean model using proper orthogonal decomposition, Computers

& Mathematics with Applications 52 (8–9) (2006) 1373–1386.
[5] T. Bui-Thanh, M. Damodaran, K. Willcox, Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition, AIAA Journal 42

(8) (2004) 1505–1516.
[6] M. Meyer, H.G. Matthies, Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods,

Computational Mechanics 31 (2003) 179–191.
[7] S.S. Ravindran, Adaptive reduced-order controllers for thermal flow system using proper orthogonal decomposition, SIAM Journal of Scientific

Computing 23 (6) (2002) 1924–1942.
[8] P.T.M. Vermeulen, A.W. Heemink, C.B.M.T. Stroet, Reduced models for linear groundwater flow models using empirical orthogonal functions, Advances

in Water Resources 27 (2004) 57–69.
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